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Chapter 1
Introduction

C is a simple language that gives the user considerable control over how source code maps
to machine code. For example, structures are guaranteed to be laid out in a particular
way, dynamic memory is not allocated unless it is asked for, all function calls are explicit,
and the only functions created are the ones that are explicitly defined. For this reason,
most low-level system code is written in C. Nevertheless programmers want to use high-
level language constructs for various reasons, and such use generally relinquishes low-
level control. For example, C++ does not guarantee a particular layout of objects. This
lack of control can cause a number of problems, including compatibility problems between
different releases of software and between different compilers.

A programmer can regain control over higher-level language feature implementation
through an extensible compiler. To provide such extensibility, macros for C are an ideal
choice. Macros for C let a programmer build higher-level constructs from a small core,
rather than forcing a programmer to accept a built-in implementation. Moreover, since
macros elevate language extensions to the level of a library, individual advanced language
features are only active when loaded.

A simple macro system, such as the C preprocessor, is not adequate for this purpose, nor
is any macro system that acts simply as a preprocessor. Rather, the macro system must be an
integral part of the language that can do more than rearrange syntax. In addition, the C base
language must be extended to support the necessary primitives for implementing higher-
level features. ZL, a new C-compatible and C++-like systems programming language in
development, addresses both of these needs.

This document presents ZL. Chapter 2 gives an into of ZL features in the form of a

tutorial. The other chapters give a detail overview of ZL features. The appendices give



information on some of ZL’s implementation.
The document is a work in progress. Proofreading of this document is greatly appreci-
ated. The easiest thing is to just edit the source (please, no reformatting!) and submit a pull

request with your corrections.



Chapter 2

Z1. Tutorial

This chapter will give you an overview of ZL with a focus on ZL extensibility features.

2.1 Hello World

ZL basic syntax is the same as it is in C or C++ therefor a simple Hello World program is

nothing but:

int main() {
printf ("Hello World!")
}

To compile, save this file to hello.z1 and then use zlc:

zlc hello.zl

which should create an excitable a.out which you can run.

Note that there is no #include line in the source file. The ZL prelude includes some
of the more common functions from the C standard library and ZL source files are not run
through the C preprocessor by default.

The driver script z1c is meant to act as a drop drop in replacement for GCC. For exam-

ple,
zlc main.zl filel.cpp file2.zlp -0 main
compiles the pure ZL source file main.z1, the C++ source file filel.cpp, and the ZL

source file file2.z1p into an executable main. Each file is compiled slightly differently
based on the extension as ZL has different modes for C, C++, and ZL source files. In



addition C, C++, and ZL source files with the .z1p extension are run through the C pre-
processor to handle includes and other token-level macros that the higher-level ZL. macro
processor can not handle. As already mentioned, pure ZL files with .z1 extension are not

preprocessed.

2.2 Macro Introduction: A Perl Like Or

C’s or operator returns a boolean value. Sometimes it would be more convenient if it returns
the first true value like Perl does. For example if we wanted to use the first non-NULL

pointer we could use:
some_call (or (pl,p2))

where pl and p2 are pointers. Defining or as a function (or even a function template) will
not work because the or macro should not evaluate the second argument if the first one
evaluates to a true value.

Fortunately, ZL makes it very easy to define simple macros such as this using the macro

form:
macro or(x, y) { ({typeof(x) t =x; £t 2t :vy;}); }
(In ZL, as in GCC, the ({...}) is a statement expression whose value is the result of the

last expression, and typeof (x) gets the type of a variable.) Like Scheme macros [6], ZL
macros are hygienic, which means that they respect lexical scope. For example, the t used
in or (0.0, t) and the t introduced by the or macro remain separate, even though they

have the same symbol name.

Syntax Macros. It is even possible to locally redefine the behavior of the built-in | |
operator so that we could instead just use pl || p2. All that is required to archive this

transformation is to change the macro to smacro:
smacro or(x, y) { ({typeof(x) t =%, t 2?2t :vy;}); }

The smacro form defines a syntax macro which operates on syntax, as oppose to the macro
form which defines a function-call macro in which calls to it take the shape of a function
call.

The syntax version of the or macro works because ZL performs most of its opera-
tions using interment S-expression like language. For example pl || p2 is parsed as
(or pl p2), before being converted into an AST (details of which are given in Chapter 3)



Keyword Parameters. The or macro above has too positional parameters. Macros can

also have keyword parameters and default values. For example:
macro sort(list, :compar = strcmp) {...}

defines the macro sort, which takes the keyword argument compar, with a default value

of strcmp. A call to sort will look something like sort (1ist, :compar = mycmp).

2.3 Classes and Templates

ZL also supports a limited subset of C++ which includes classes and very basic template
support. Classes are defined if the usual way. ZL recognizes the template syntax, but tem-
plates are defined using a macro and must be explicitly instantiated by calling the macro.

For example, to use a vector of type int:
mk_vector (int)

int main() {
vector<int> con;

}

‘We will revisit the mk_vector macro in Section 2.6.

2.4 Extending The Grammar: Foreach

One very common operation is to iterate through the elements of a container. It is such a
common operation that support for it was incorporated latest version of the C++ standard
via special version of the for loop. ZL doesn’t support this version, but we can very
easily define a similar construct. Instead of extending the syntax of for we will define a
new syntax form: foreach. The usage of the form is straightforward; for example, the
following code prints all the elements of a vector:

int main() {
vector<int> con;

foreach (elm in con) {
printf ("$d\n");
}



The first thing we need to do to support the new foreach form is to define some
new syntax. ZL provides basic support for new syntax by extending the PEG using the
new_syntax form. We add support the new loop form by rewriting the CUSTOM_STMT pro-
duction as follows:

new_syntax {

CUSTOM_STMT := _cur / <foreach> "foreach" " (" {ID} "in" {EXP} ")" {STMT};
}

The special _cur production refers to the previous version of the CUSTOM_STMT and any-
thing between {} becomes a subpart of the syntax object that is named between the <>.

With the new syntax defined the definition of the macro is fairly straightforward:

smacro foreach (VAR, WHAT, BODY) {
typeof (WHAT) & what = WHAT;
typeof (what .begin()) i=what.begin(), e=what.end();

for (; 1 != e; ++1i) {
typeof (*i) & VAR = *i;
BODY;

Chapter 3 gives more details on the PEG and how to extend it.

2.5 Procedural Macros

All the macros shows so far are simple pattern-based macros. Sometimes we need to
do more than simply rearrange syntax. For example, in the foreach macro of the previous
section, if the container lacks a begin or end method ZL will return a cryptic error message
which will refer to the expanded output, rather than the user input; it would be far better to
give a straightforward error message which refers to the user input. For these more complex
tasks ZL provides support for procedural macros which can take action base on their input.

A procedural macro is a function which maps one syntax object to another. ZL provides
special syntax support for defending these functions. They look a lot like pattern-based
macros expect that the keyword proc proceeds the macro and the body of the macro is ZL
code rather than the expanded output. Syntax is created using special quasiquote syntax.
For example, the following macro defines a version of the foreach which returns an error

message if the container lacks the proper methods:



proc smacro foreach (VAR, WHAT, BODY) ({
Syntax * what = ‘‘WHAT,;
if (!symbol_exists(‘‘begin, what) || !symbol_exists(‘‘end, what))
return error (what, "Container lacks begin or end method.");
return ‘{
typeof (WHAT) & what = WHAT;
typeof (what.begin()) i=what.begin(), e=what.end();
for (;i != e; ++1i) {typeof(*i) & VAR = *i; BODY;}
bi

The symbol_exists and error are API functions which are callbacks into the com-
piler. The ‘" and ‘{ are quasiquotes; the first forms quotes an identifier; the second form
quotes arbitrary syntax. Pattern variables can only be used inside quasiquotes; however, the
symbol_exists and error function requires a syntax object. Hence, ' ‘WHAT is used to

extract the syntax object associated with the pattern variable and store it in a local variable.

Antiquotes. Rather than using pattern variables, it is possible to use antiquotes to store
the result of the match in local variables by prefixing the variable with a $. For example,

here is a version of foreach that uses antiquotes instead:

proc smacro foreach ($var, S$what, Sbody) {

if (!symbol_exists(‘‘begin, what) || !symbol_exists(‘‘end, what))
return error (what, "Container lacks begin or end method.");
return ‘{

typeof (Swhat) & what = Swhat;

typeof (what.begin()) i=what.begin(), e=what.end();

for (;1 != e; ++i) {typeof(*i) & S$var = *i; Sbody;}
i

When an antiquote is used when matching syntax the results of the match are stored in
a local variable hence $body gets stored in the local variable body, which is then used for
by the symbol_exist and error function. When an antiquote is used inside quasiquotes

than it is replaced with the value of the expression; in most cases this is a local variable.

Additional Info. Shown here is only a small taste of what procedural macros can do. ZL
procedural macros are very powerful and in many ways, act more as an extension to the
compiler than a simple macro that transforms text from one form to another. Chapter 4
gives additional information on procedural macros, which includes a lower level and more
powerful APL.



2.6 Templates and Bending Hygiene

As already mentioned in Section 2.3, ZL does not have builtin template support. Instead
a macro can be used to create instances of a template. Figure 2.1 shows the macro and
supporting code to create for the vector template class.

There are two things to note about this macro, the first is some special syntax to make
the template instance to behave as expected, and the second is to bend normal hygiene rules

so that vector and the members of the class are visible outside the macro.

Special Template Syntax. Template classes have special syntax that ZL needs to know
to recognize; which is done using the template form (which is used differently than it
is in C++). In addition templates have special linkage rules so that there are not multiple
instances of the same template in the executable, hence __once is used to declare that dupli-
cate symbols should be merged when linking. Other than that, the body of the mk_vector

is the same as it would be for a template class in ZL.

Bending Hygiene. Normal hygiene rules will normally prevent the mk_vector macro
from working as expected as all symbols created will only be visible to the macro itself. To
fix this ZL macros supports special syntax, the : (*), which will export top-level symbols
from the macro (which includes the members of the vector class). Details of exactly what
is exported and how are given in Section 6.2.1.

It 1s also possible to export specific symbols by specifying the symbol name instead

of *, again see Section 6.2.1 for the details.

2.7 Bending Hygiene Part 2: Fancy Loops

In the previous section we needed to make the macro introduced symbols visible outside the
context of the macro. Sometimes it is necessary to make symbols visible to the parameters
of the macros. For this case, ZL provides a different mechanism, the fluid binding. For
example, if we wanted to create a version of the for loop which also supports a Perl style

redo we might try



template vector;

macro mk_vector (T,Q_) :(*)

{

once vector<T>

class vector<T> {
private:

T * data_;
T * end_;
T * storage_end_;

public:

typedef T * iterator;
typedef const T * const_iterator;
typedef size_t size_type;

iterator begin() const {return data_;}

iterator end() const {return end_;}
bool empty() const {return data_ == end_;}
size_t size() const {return end_ - data_;}

size_t max_size() const {return (size_t)-1;}

size_t capacity() const {return storage_end_ - data_;}
T & front () const {return *data_;}

T & back() const {return *(end_-1);}

T & operator([] (size_t n) const {return data_[n];}

vector<T>() : data_(NULL), end_(NULL), storage_end_ (NULL)
vector<T>(size_t n) : ... {resize(n);}
vector<T> (const vector<T> & other) : ... {...}

void push_back(const T & el) {...}
void pop_back() {...}

void assign(const T * d, unsigned sz) {...}
void resize(size_t sz) {...}
void erase(T * pos) {...}

~vector<T>() {...}

{}

Figure 2.1: ZL implementation of vector template class



macro redo() {goto redo;}

smacro for (INIT, TEST, INC, BODY) {
for (INIT; TEST; INC) {
redo () :
BODY;
}
}
(where the for used in the macro will refer to the builtin for and not the macro itself and
redo: is a label for the goto in the redo macro). A simple usage of the macro could be:
int main() {
for (int 1 = 0; 1 < 10; ++1i) {
++1;
printf ("$d\n", 1);
if (1 $ 3 ==0)
redo();

Unfortunately this will not work. The problem is the redo label introduced in the for
macro is private to that macro. Exporting the label will not help, as the label used in the
redo macro is still lexically scoped. The export syntax only has meaning to new binding
forms not existing ones, hence that form can’t be used. ZL does provide a way to make
both redo labels totally unhygienic (see Section 6.2.3), but that solution will not compose
well [4].

What is really needed is something akin to dynamic scoping in the hygiene system.
That is, for the redo label to be scoped based on where it is used when expanded, rather
than where it is written in the macro definition. This can be done by marking the redo
symbol as fluid using fluid_label at the top level and then using £1uid when defining

the symbol in local scope. For example, the following will allow the above to compile:

fluid_label redo;
macro redo() {goto redo;}

smacro for (INIT, TEST, INC, BODY) {
for (INIT; TEST; INC) {
fluid redo:
BODY;
}

10



The general form to declare fluid binding is f1uid_binding, the details of which are
described in Section 6.2.2

2.8 User Types

ZL does not have a built-in notion of classes, rather the type system has what is known as
a user type of which classes are built from using macros. A user type has two parts: a type,
generally a st ruct, to hold the data for the class instance, and a collection of symbols for
manipulating the data.

The collection of symbols is a module. For example,

module M { int x;
int foo(); }
defines a module with two symbols. Module symbols are used by either importing them
into the current namespace, or by using the special syntax M: :x, which accesses the x
variable in the above module.
A user type is created by using the user_type primitive, which serves as the mod-
ule associated with the user type. A type for the instance data is specified using
associate_type.

As an example, the class!

class C { int i;
int f(int J) {return i + 3;} };

roughly expands to:

user_type C {
struct Data {int 1i;};
associate_type struct Data;
macro i (:this ths = this) {...}
macro f(j, :this ths = this) {f‘internal (this, 3j);}
int f'internal(...) {...}

}
which creates a user type C to represent a class C; the structural type Data is used for the
underlying storage. The macro i implements the i field, while the £ macro implements the
f method by calling the function f ‘internal with ths as the first parameter. Additional

details of how classes are implemented are given in Chapter 9.

IFor simplicity, we leave off access control declarations and assume all members are public in this work

when the distinction is unimportant.
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Chapter 3
Parsing and Expanding

The macros shown so far have been fairly simply. Writing more sophisticated macros, such
as those required to implement classes, requires some knowledge of parsing and macro
expansion in ZL. This chapter gives the necessary background material, while the next

chapter details how to write such macros.

3.1 Parsing Overview

To deal with C’s idiosyncratic syntax while also allowing the syntax to be extensible, ZL
does not parse a program in a single pass. Instead, it uses an iterative-deepening approach
to parsing. The program is first separated into a list of partly parsed declarations by a
Packrat [11, 12] parser that effectively groups tokens at the level of declarations, statements,
grouping curly braces, and parentheses. Each declaration is then parsed. As it is being
parsed and macros are expanded, subparts, such as code between grouping characters, are
further separated.

ZLs iterative-deepening strategy is needed because ZL does not initially know how to
parse any part of the syntax involved with a macro. When ZL encounters something that
looks like a function call, such as £ (x + 2, vy), it does not know if it is a true function
call or a macro use. If it is a macro use, the arguments could be expressions, statements, or
arbitrary syntax fragments, depending on the context in which they appear in the expansion.
Similarly, ZL. cannot directly parse the body of a macro declaration, as it does not know

the context in which the macro will ultimately be used.

12



Syntax Syntax
Raw Text Parse | Object Partly Expand, Object
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Raw Text
A\

Figure 3.1: Overview of ZL’s parsing process.

More precisely, the ZL parsing process involves three intertwined phases as shown in
Figure 3.1. In the first phase raw text, such as (x+2), is parsed. Raw text is converted into
an intermediate form known as a syntax object, which can still have raw-text components.
(Throughout this paper we show syntax objects as S-expressions, such as (" ()" "x+2").)
In the second phase, the syntax object is expanded as necessary and transformed into other
syntax objects by expanding macros until a fixed point is reached. In the third phase, the
fully expanded syntax object is compiled into an AST.

Figure 3.2 details ZL’s parsing and expansion process. The top box contains a simple
program as raw text, which is first parsed. The result is a synrax list (internally represented
as a @) of stmt’s where each stmt is essentially a list of tokens, as shown in the second box.
Each statement is then expanded and compiled in turn, and is added to the top-level envi-
ronment (which can be thought of as an AST node). The third box in the figure shows how
this is done, which requires recursive parsing and expansion. The first stmt is compiled
into the fun £, while the body of the function is left unparsed. Next, fun is compiled into an
AST (shown as a rounded rectangle). During the compilation, the body is expanded. Since
it is raw text, this process involves parsing it further, which results in a block. Parsing the
block involves expanding and compiling the subparts. Eventually, all of the subparts are
expanded and compiled, and the fully parsed AST is added to the top-level environment.
This process is repeated for the function main, after which the program is fully compiled.

13



inline int f() {int x = 10; return x;}
int main() {return f£();}

JPARSE]
(@ (stmt inline int £ ("()™ "") ("{}" "int x = 10; return x;"))
(stmt _int main ("O"™ "™) ("{}" "return £();")))
JEXPAND & COMPILE|
(' TOP-LEVEL ENVIRONMENT h
’ (stmt inline int f ...) ‘
JEXPAND/|
’ (fun £ "()" int :inline ("{}" "int x = 10; return x;"}) ‘
JCOMPILE|
(FUN B
inline | true
id f
type | int

’ ("{}" "int X = 10; return X; ")

JEXPAND & REPARSE|
(block (stmt iInt x = 10)

(return (exp x)))

|COMPILE]
(BLOCK h
| (stmt int x = 10)) \
body |EXPAND
’ (var x (int) (exp 10)) ‘
|COMPILE/
VAR

’ (return (exp X)) ‘

ot
g - - J

(stmt int main ...) ‘

Tt

Figure 3.2: How ZL compiles a simple program. The body of f is reparsed and expanded
as it is being compiled.
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3.2 The Parser

The ZL grammar is specified through a PEG [12], but with a few extensions to the usual
PEG notation, and a Packrat [11] parser is used to convert strings of characters to syntax
objects. A simplified version of ZL’s initial grammar is shown in Figure 3.3.

For readers not familiar with PEGs, the two most important things to note are that
PEGs work with characters rather than tokens, and the / operator defines a prioritized
choice. A prioritized choice is similar to the | operator used in Backus-Naur Form, ex-
cept that it unconditionally uses the first successful match. For example, given the rule
“A = "a’ / "ab’” the string ab will never match because the first choice is always taken.
The PEG specification more closely resembles regular expression syntax (as used in grep)
than it does Backus-Naur Form. The (), [], ?, *, +, and _ (otherwise known as .) operators
are all used in the same manner as they are in regular expressions.

Anything between single quotes is a literal string. The double quote is like the single
quote, except that special rules make them behave similarly to tokens. For example, "for"
will match the for in for (, but it will not match the prefix of foreach.

The {} and <> are extensions to the standard PEG syntax and are used for constructing
syntax objects in the obvious ways. The special <<reparse>> operator creates a syntax
object with a raw-text component that will be parsed later. The special <<mid>> operator
and MID production are explained later in Section C.2.

The CUSTOM_STMT production serves as a hook to allow easily adding new statements
to the grammar. The __ operator always matches and the ! inverts the results; thus, !___

never matched. This production therefor does nothing by default.

3.3 Extending the Parser

ZL currently provides very basic support for expanding the parser by rewriting productions.
Like macros, parser extensions in ZL are given in source code using the new_syntax form
(as oppose to using a separate file). For example, the following add a new foreach state-
ment form (from Section 2.4 in the tutorial)

new_syntax {
CUSTOM_STMT := _cur / <foreach> "foreach" " (" {ID} "in" {EXP} ")" {SIMT};

15



TOP = <top> SPACING {STMT}+;

STMT = <<mid PARM>> {MID} ";"
/ <if> "if" " (" {EXP} ")" {STMT} ("else"™ {STMT})?
/ <while> "while" " (" {EXP} ")" {STMT}
/ <break> "break" ";"
/ <return> "return" {EXP} ";"
/ {BLOCK}
# other statements
/ {CUSTOM_STMT}
/ <stmt> ({TOKEN_}+ {PAREN} {BRACE} / {TOKEN}+ ";");

CUSTOM_STMT = !__;

EXP = <exp> {TOKEN}+;

BLOCK = <block> "{" {STMT}* "}";

TOKEN_ = <<mid PARM>> {MID} / {STRUCT_ UNION} /
{BRACK} / {CONST} / {ID} / {SYM} /

TOKEN = TOKEN_ / PAREN;

PAREN = <<reparse > " (" {RAW_TOKEN*} ™)";

BRACE = <<reparse
BRACEL = <<reparse
BRACK = <<reparse

>> "{" {RAW_TOKENS} "}";

) >
}>> "{" {RAW_TOKEN*} "}";
{}

1>> "[" {RAW_TOKEN*} "]";

CONST = <f> ... / <1> ... / # float, numeric literal
<s> .../ <> oL # string, character
ID = <<mid>> {MID} / {[€$\a_][\a_\d]*} SPACING;

SYM = {"..." [/ ==’

STRUCT_UNION = <%>

STRUCT_UNION_PARMS

{
{sS

/ "+ / ...} SPACING;

"struct"/"union"/"class"} {ID/}
TRUCT_UNION_PARMS} {<{...}> {BRACEL}
(:<public> ":" "public" {ID})?;

RAW_TOKEN = STRING / CHAR / SYM / BRACE / PAREN /
BRACK / COMMENT / [“\)\I\}1;

STRING = """ ("\\'_/[*"])+ """ SPACING;
CHAR = I\ (P\N'_/[M )+ "\ SPACING;

SPACING

COMMENT R

[\s]* COMMENT?;

Figure 3.3: Simplified PEG grammar.
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by adding a new prioritized choice to the special CUSTOM_STMT production in which the
special _cur production refers to the previous version of the CUSTOM_STMT. The other
common way to add new syntax is to add a new sequence item; for example,

new_syntax {

STRUCT_UNION_PARMS := _cur (:<fix_size> ":" "fix_size" "(" {EXP} ")" )?;
}

adds extra syntax to the class form (used in the example in Section 4.12).

The new_syntax form works by creating a new parser, which is then used for any text,
within the current scope, that has not yet been parsed. This has not precisely defined yet,
but for the most part it will work as expected. A consequence of this rule is that redefining
fundamental aspects of the grammar (such as strings, comments, deliminators) is unlikely

to work.

3.4 Built-in Macros

The grammar serves to separate individual statements and declarations, and to recognize
forms that are convenient to recognize using a Packrat parser. As such, it creates syntax
objects that need additional processing before they can be compiled into an AST. The
expander has several built-in macros for this purpose: stmt, exp, (), [], and {}.

The stmt macro recognizes declarations and expressions. It first tries the declarations
expander, which is a handwritten parser designed to deal with C’s idiosyncratic syntax for
declarations. If the declarations expander fails, then the expression expander is tried, which
is an operator-precedence parser [9]. The exp macro is like the stmt macro, but only the
expression expander is tried.

The macros (), [], and {} are used for reparsing strings. The () and [] macros
reparse the string as an expression using the EXP production in the grammar, where as the
{} generally reparses the string as a block using the BLOCK production.

17



Chapter 4
Procedural Macros

So far only the high level syntax for procedural macros are shown. ZL also allows for
defining the macro-transformer function directly. This chapter will present the low-level
interface, and the associated API. Many of the API function can also be used with the
higher-level procedural macro form. The chapter ends with an extended example to get a

better idea of how many of the API components work.

4.1 Low Level Procedural Macros

Figure 4.1 demonstrates the essential parts of any procedural macro. The macro is defined
as a function that takes a syntax object (and optionally an environment), and returns a
transformed syntax object. Syntax is created using the syntax form. The match_f function
is used to decompose the input while the replace function is used to rebuild the output.
Finally, make_macro is used to create a macro from a function. More interesting macros
use additional API functions to take action based on the input. Figure 4.2 defines the key
parts of the macro API, which we describe in the rest of this section.

Syntax is created using the syntax and raw_syntax forms. The different forms create
different types of code fragments. In most cases, the syntax {...} form can be used,
such as when a code fragment is part of the resulting expansion; the braces will not be in
the resulting syntax. If an explicit list is needed, for example, when passed to match_f as
in Figure 4.1, then the syntax (...) form should be used (in which the commas are part
of the syntax used to create the list). Neither of these forms create syntax directly, however;
for example, syntax {x + y;}isfirstparsedas ("{}" "x + y;") before eventually be-

coming (plus x y). When it is necessary to create syntax directly, the syntax ID form
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Syntax * or(Syntax * p) {
Match * m = match_f (NULL, syntax (x, y), p);
return replace(syntax
{({typeof(x) t = x; t 2t 1 y;})i},
m, new_mark());
}

make_macro or;

Figure 4.1: Procedural macro version of or macro from Section 2.2.

Types: UnmarkedSyntax, Syntax, Match, and Mark

Syntax forms:

new_mark () — returns Mark *
syntax (...)|{...}|ID—returns UnmarkedSyntax *
raw_syntax (...) —returns UnmarkedSyntax *

make_macro ID [ID];

Callback functions:

Match * match_f (Match * prev, UnmarkedSyntax * pattern, Syntax * with)
Syntax * match_var (Match *, UnmarkedSyntax * var);

Syntax * replace (UnmarkedSyntax *, Match *, Mark ¥*)

size_t ct_value(Syntax *, Environ *)

Figure 4.2: Basic macro APL
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can be used for simple identifiers. For more complicated fragments the raw_syntax form
can be used in which the syntax is given in S-expression form.

The match_f function decomposes the input. It matches pattern variables (the second
parameter) with the arguments of the macro (the third parameter). If it is successful, it
prepends the results to prev (the first parameter) and returns the new list. If prev is NULL,
then it is treated as an empty list. In the match pattern a _ can be used to mean “don’t care.”

The replace function is used to rebuild the output. It takes a syntax object (the first
parameter, and generally created with syntax), replaces the pattern variables inside it with
the values stored in the Match object (the second parameter), and returns a new Syntax
object.

The final argument to replace is the mark, which is used to implement hygiene. A
mark captures the lexical context at the point where it is created. Syntax objects created
with syntax do not have any lexical information associated with them, and are thus un-
marked (represented with the type UnmarkedSyntax). Itis therefore necessary for replace
to attach lexical information to the syntax object by using the mark created with the
new_mark primitive (the third parameter to replace).

Match variables exist only inside the Match object. When it is necessary to access them
directly, for example, to get a compile-time value, match_var can be used; it returns the
variable as a Syntax object, or NULL if the match variable does not exist. If the compile-
time value of a syntax object is needed, ct_value can be used, which will expand and
parse the syntax object and return the value as an integer.

Once the function for a procedural macro is defined, it must be declared as a macro

using make_macro.

4.2 Macro Transformer Arguments

The macro transformer can take one of four forms. So far only the most basic of forms was
shown, that is a transformer that takes a single argument which is the syntax object to be

transformed:
Syntax * macro_fun(Syntax *)

The passed in syntax object is the arguments to the macro call and not the call itself. When

the call itself is needed a two argument form can be used:

Syntax * macro_fun(Syntax * call, Syntax * args)
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In the case of a syntax macro call and args point to the same object. In the case of a

function-call macro call has the form
(call name (. argl arg2 ...))
and args has the form
(. argl arg2 ...)
The macro transformer can also accept an environment in either if the above forms:

Syntax * macro_fun(Syntax *, const Environ ¥*)
Syntax * macro_fun(Syntax *, Syntax *, const Environ *)

ZL will also accept a transformer that expects a non-const environment, but that form is
deprecated as directly modifying the environment in the transformer can lead to unpre-

dictable results.

4.3 Macro API

The next couple of sections will detail various aspects of the Macro API. The API has both
a class-like form and a procedure form; these sections presents the class-like form. The
mapping from the class API to the raw API is straightforward. The general scheme is that
the object name prepends the method in all lower case with an underscore separating it
from the method name. The object is then passed in as the first parameter. For example,
the method:

Syntax * Match::var (UnmarkedSyntax * var);
becomes
Syntax * match_var (Match *, UnmarkedSyntax * var)

You may notice that many functions have seemly pointless default parameters. In reality
these are expected to bind to a local fluid binding, which is used by high-level procedural
macros and the quasiquotes. The details of how both use these arguments will be given the
next chapter. For now, it is sufficient to know that when using high-level procedural macros

the mark and envision symbols will be defined for you.
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Type UnmarkedSyntax

Type Syntax, subtype of UnmarkedSyntax, with methods:
Syntax * num_parts (unsigned)
Syntax * part (unsigned)
Syntax * flag(UnmarkedSyntax ¥*)
bool simple()
bool eqg(UnmarkedSyntax *)
Syntax * stash_ptr(void *) (static method)
void * extract_ptr()

Figure 4.3: Syntax object APL

4.4 The Syntax Object

The API for syntax objects (see 3.1) is listed in Figure 4.3. There are two syntax-objects
types, UnmarkedSyntax and Syntax. The difference between the two is the first repre-
sents a syntax object that has not been marked (see 4.1) yet, while the second one has. A
Syntax object will automatically convert to a UnmarkedSyntax. But in order to go from
UnmarkedSyntax to Syntax the syntax object needs be marked, which is generally done
via replace.

Internally UnmarkedSyntax and Syntax are the same type. The distinction in the API
is to avoid invalid use of unmarked syntax objects.

A syntax object consists of one or more parts, and optional flags. The first part has
special meaning and is used to identify the syntax, provided that it is simple. A simple
syntax object is basically' a syntax object with just one part, and no flags. Internally it is
represented slightly differently. Parts other than the first are considered arguments.

Syntax objects can also have any number of optional flags. A flag is a named argument
and is retrieved by name, rather than position. A flag itself is just a normal syntax object
with the first part used to name the flag. Flags can be tested for existence using the Syntax’s
flag method (which returns NULL if the flag does not exist) or matched with the match
family of functions (see 4.6). Flags are primarily used when parsing declarations and can
be created in macros by using the raw_syntax primitive. For example the following syntax

object:

(... :flagl :(flag2 value2))

I'This is an over simplification since “foo” and “(foo)” are not the same. The first is considered simple

while the second is not.
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contains two flags, where f1agl is a flag without any value associated with it while f1ag2
is a flag with a value. Flags can also be passed into function call macros in which are just
another name for the already described keyword arguments.

Syntax objects can also contain other types of objects embedded within them. A syn-
tax object of such form is considered an entity. The most common types of objects are
parsed syntax either in the form of an AST node or a symbol. However, it is also possible
to embed arbitrary objects such as pointers in a syntax object using the stash_ptr and
extract_ptr methods. These methods are most commonly used in combinations with
Symbol properties, which will be described in 7.4.

Sometimes it is useful to get information on the syntax object without having to use
match_£f. For this ZL provides a number of methods to directly access the syntax object
and get basic information. The part and num_parts method can be used for direct access.
The eq and simple method can be used to get basic properties on the syntax object. The
eq method tests if the syntax object is equal to another, taking into account that the first
one may be marked. The simple method tests if the syntax object is simple as previously
described.

4.5 The Syntax List

A syntax list is a syntax object whose first part is a @. It represents a list of syntax objects
(which can include flags). Lists have the effect of being spliced into the parent syntax
object.

Syntax lists can be used as values for macro identifiers, in which case the results are
spliced in. Macros can return syntax lists, but the results are not automatically spliced in.
Rather when a list of elements is parsed any @ are flattened as the list is read in. It is an
error to return a syntax list in a nonlist context.

The SyntaxList API is shown in Figure 4.4. Syntax lists are created using the
new_syntax_list function. Elements are then appended to the list using the append
or append_flag method. The empty method returns true if the list has O elements. The
elements method is used to iterate through the elements and return a SyntaxEnum. The
next method of SyntaxEnum returns the next element in the list or NULL if there is none,

while the clone method returns a copy of the SyntaxEnum.
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Type SyntaxList, subtype of Syntax, with constructor:
SyntaxList * new_syntax_list ()
and methods:
int empty ()
void append(Syntax *)
void append_flag(Syntax *)
SyntaxEnum * elements ()

Type SyntaxEnum with methods:
Syntax * next()
SyntaxEnum * clone()

Figure 4.4: Syntax list APL.

Type Match with methods:
Syntax * var (UnmarkedSyntax *)
SyntaxEnum * varl (UnmarkedSyntax *)

and related functions:
Match * match_f (Match * prev, UnmarkedSyntax * pattern, Syntax * with)
Match * match_parts_f (Match *, UnmarkedSyntax * pattern, Syntax * with)
Match * match_local (Match *, ...)

Callback function:
Syntax * replace (UnmarkedSyntax *, Match *, Mark ¥*)

Figure 4.5: Match and replace API.

4.6 Matching and Replacing

Figure 4.5 lists the API for matching and replacing (see 4.1). The match_f and replace
functions have already been described. The var method is identical to the previously de-
scribed match_var function. The varl method is like var except that it returns an an
enumeration for iterating through the elements of a syntax object that is also a list. The fact
that it results an enumeration rather than a list is deliberate, since syntax lists are mutable
objects, and the results from a match are not.

The match_f function matches the arguments of a syntax objects, which excludes
the first part (generally the name of a syntax object). The match_parts_f, by contrast,
matches the complete syntax object by matching the parts of the syntax object.

When it is necessary to build syntax directly from syntax objects, the match_local

function provides a convenient way to do so. It takes in a match object and a list of syntax
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objects, terminated by NULL. It will assign a numeric match variable in the form of $NUM

with the first one being $1.

4.7 Match Patterns

A pattern to be matched against is expected to either be a simple list of the form
syntax (a, b, ...) or fully parsed, i.e., created with raw_syntax. The difference is
that pattern variables matched with the former will need to be reparsed while patterns vari-
ables matched with latter do not.

The syntax () form is designed to be used when matching parameters passed in via a
function-call macro. The pattern contains a list of the following (with some restrictions on

order):

e ID

ID = VALUE — must be after all plain ID’s
@ — can only appear once

@ID — must be last

o :FLAG

:FLAG ID

:FLAG ID = VALUE

ID matches a normal parameter. The second item, “ID = VALUE”, is used for giving pa-
rameter default values if they are omitted. A _ can be used any place an identifier will be
used when the value is irrelevant. Parameters can also be optional if they are after the spe-
cial @ instruction, in which case they will simply be omitted from the match list. The @/D
form will match any remaining parameters and store them in a syntax list. Flags (otherwise
known as keyword arguments) can also be matched with any of the : FLAG forms. Flags,
in the current implementation, are always optional; however, any matched flags will not
appear in the syntax list matched with @ID.

For example, in the pattern X, _, Y, 2z =29, :flagl, :flag2 _,
:flag3 F2 = 8, @, A, B, @REST), the first three positional parameters are re-
quired, but we do not care about the value of the second. In addition the flags f1agl and
flag2 are required, with the second one also requiring a value. In addition to the required
parameters, the next three positional parameters will be stored in Z, A, and B respectively.

If the fourth parameter is not given it will get the default value 9, while if the other two
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Type EnvironSnapshot with related syntax form:
environ_snapshot () — returns EnvironSnapshot *

Type Mark with related function:
Mark * new_mark_f (EnvironSnapshot *)

and macros:
macro new_mark(es = NULL) {new_mark_f(es ? es : environ_snapshot();}
macro new_empty_mark () {new_mark_f (0);}

Figure 4.6: Mark API.

are not given they will simply not be present in the match list. Any additional parameters
passed in will be stored in REST as a list. Finally, the flag f1ag3 may also be given, but if
it is not, it will assume the default value 8.

A pattern can also be specified in raw_syntax form, which is designed to be used with
syntax macros. In the raw_syntax form a pattern can represent anything that a match
list can. In addition, it is possible to match the subparts of an expression using (pattern
(WHAT ...)). For example, to match the list of declarations inside of a class body which
isrepresented as (class foo ({...} decll decl2)) into the pattern variable body, the
(_ _ (pattern ({...} @body))) pattern can be used.

It is also possible to use the raw_syntax form with function-call macros; however,
when doing so it is important to know that the macro parameters are not parsed. For
example if f is a function-call macro, the parameter of the call f (x+2) is passed in as
(parm "x+2"). When using the syntax forms for matching, ZL’s normal parsing process
(see 3, C.2) parses the string at the right time. But the raw_syntax form skips this step.
Thus, it it necessary to manually instruct ZL to parse the parameter passed in by using

(reparse ID). For example, to match the parameter in the £ macro above use:

match_f (..., raw_syntax((reparse ID), ...))

4.8 Creating Marks

Marks (see 4.1) are used to implement lexical scope, and the API is listed in Figure 4.6.
The new_mark primitive is actually a macro that calls the callback function new_mark_f

and uses the primitive environ_snapshot () to capture the environment.
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Callback functions:

Syntax * partly_expand(Syntax *, Position pos, Environ *)

SyntaxEnum * partly_expand_list (SyntaxEnum *, Position pos, Environ *)
and enum Position with possible values:

NoPos, OtherPos, TopLevel, FieldPos, StmtDeclPos, StmtPos, ExpPos

Figure 4.7: Expander API.

4.9 Partly Expanding Syntax

In complex syntax macros, it is often necessary to decompose the parts passed in. However,
in most cases, those parts are not yet expanded; thus it is necessary to expand them first. To
support this expansion ZL provides a way to partly expanded a syntax object in the same
way it will internally; the API is shown in Figure 4.7.

The pos parameter tells ZL. what position the syntax object is in; the values of the
Position enum can be bitwise or’ed together. This parameter will affect how the expan-
sion and, if necessary, reparsing is done. Common values are TopLevel for declarations,
StmtPos for statements, and ExpPos for expressions. The Environ parameter is the envi-
ronment as passed into the macro.

If the parts of a syntax object represent a list of some kind, it is best to use
partly_expand_list. The function partly_expand_list is like partly_expand, ex-
cept that it expects a list of elements in the form of an SyntaxEnum, and it automatically
flattens any Syntax Lists (ie @) found inside the list. The elements of the list are expanded

as they are iterated through, rather than all at once when the function is called.

4.10 Compile-Time Reflection

Often it is necessary to do more than just decompose syntax. Sometimes, it is necessary to
get compile-time information on the syntax objects or the environment itself—for example,
to get numerical value of an expression as was done in with fix_size in Section 4.12 or
to check if a symbol exists as is done in foreach in Section 2.5. Figure 4.8 shows some of
the available API functions for compile-time reflection.

The ct_value function (which was used in the fix_size example) takes a syntax
object, expands the expression, parses the expansion, and evaluates the parsed expression

as an integer to determine its value. An error is thrown if the expression passed in is not a
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Callback functions:
unsigned ct_value (Syntax *, const Environ * = environ)
bool symbol_exists (UnmarkedSyntax * sym, Syntax * where,
Mark * = mark, const Environ * = environ)
Environ * temp_environ(const Environ *)
Syntax * pre_parse(Syntax *, Environ ¥*)

Figure 4.8: Compile time reflection API.

Callback functions:
UnmarkedSyntax * string_to_syntax(const char *)
const char * syntax_to_string(UnmarkedSyntax *)
void dump_syntax (UnmarkedSyntax *)
Syntax * error(Syntax *, const char *, ...)

Figure 4.9: Misc API functions.

compile time constant.

To see if a symbol exists in the current environment or an object that is a user type (as
was done in the foreach example), the symbol_exists function can be used. The first
argument is the symbol to check for. The second argument is the user type to check that
the symbol exists in; if it is NULL then the current environment will be checked instead. The
third argument provides the context in which to look up the current symbol, and finally the
last argument is the environment to use.

Sometimes in order to get compile-time information it is necessary to add additional
symbols to the environment. For this the temp_environ and pre_parse functions are
used, as was done in the fix_size macro. The temp_environ function creates a new
temporary environment while pre_parse parses a declaration just enough to get basic
information on it, and then adds it the the environment. The creation of a temporary envi-
ronment avoids affecting the outside environment with any temporary objects added with

pre_parse.

4.11 Misc API Functions

Sometimes it is necessary to create syntax on the fly, such as creating syntax from a number
that is computed at run time. The string_to_syntax function, shown in Figure 4.9,

converts a raw string to a syntax object. The string passed in is the same as given for the

28



syntax form, which can be specified at run time.

The syntax_to_string function does the reverse, which is primarily useful for check-
ing an identifier for a literal value. It is also useful for debugging to see the results of a
complex macro. However, for large syntax objects the dump_syntax function is more ef-
ficient. For complex syntax objects the output of both functions is designed to be human
readable and as such the output is not suitable for reparsing with string_to_syntax.

The error function is used to return an error condition. It creates a syntax object that
results in an error when it is parsed. The first argument is used to determine the location
where the error will be reported; the location associated with this syntax object is used as
the location of the error.

4.12 An Extended Example

To get a better idea of how procedural macros work, this section gives the code of a macro
that fixes the size of a class. Fixing the size of a class is useful because changing the
size often breaks binary compatibility, which forces code using that class to be recompiled.
Additional examples of how ZL can be used to mitigate the problem of binary compatibility
are given in our previous work [3].

The macro to fix the size of the class is shown in Figure 4.10. To support this macro the
grammar has been enhanced to support fixing the size. The syntax for the new class form

1S:

class C : fix_size(20) { ... };

which will allow a macro to fix the size of the class C to 20 bytes. The enhancement in-
volved modifying the STRUCT_UNION_PARMS production to support the fix_size construct

using the new_syntax form (see Section 3.3):

new_syntax {
STRUCT_UNION_PARMS := _cur (:<fix_size> ":" "fix_size" "(" {EXP} ")" )?2;
}
Most of the syntax is already described in Section 3.2. The only new thing is : <>, which
constructs a property to be added to the parent syntax object, which in this case is class.
The {...} (in which the ... are literal) is the name of the syntax object for the class body.
The macro in Figure 4.10 redefines the built-in class macro. It works by parsing the
class declaration and taking its size. If the size is smaller than the required size, an array of
characters is added to the end of the class to make it the required size.
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1 Syntax * parse_myclass(Syntax * p, Environ * env)
2 Mark * mark = new_mark();
3 Match * m = match_f

{

4 (0, raw_syntax(name @ (pattern ({...} @body))
5 : (fix_size fix_size) Qrest), p);

6 Syntax * body = match_var (m, syntax body);

7 Syntax * fix_size_s = match_var(m, syntax fix_size);

9 if (!'body || !fix_size_s) return parse_class(p, env);

11 size_t fix size = ct_value(fix_size_s, env);

13 m = match(m, syntax dummy_decl,

14 replace (syntax {char dummy;}, NULL, mark));
15 Syntax * tmp_class = replace(raw_syntax

16 (class name ({...} @body dummy_decl) @rest),

17 m, mark);

18 Environ * lenv = temp_environ (env);
19 pre_parse (tmp_class, lenv);
20 size t size = ct_value

21 (replace(syntax(offsetof (name, dummy)), m, mark),

2 lenv);

23

24 if (size == fix_size)

25 return replace (raw_syntax

26 (class name ({...} @body) @rest),

27 m, mark);

28 else if (size < fix_size) {

29 char buf[32];

30 snprintf (buf, 32, "{char d[%u];}", fix_size - size);

31 m = match(m, syntax buf,

32 replace(string_to_syntax(buf), NULL, mark));

33 return replace(raw_syntax

34 (class name ({...} @body buf) (@rest),
35 m, mark);

36 } else

37 return error(p,"Size of class larger than fix_size");

38}
39 make_syntax_macro class parse_myclass;

Figure 4.10: Macro to fix the size of a class. All . ..
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The details are as follows. Lines 2—7 decompose the class syntax object to extract the
relevant parts of the class declaration. A @ by itself in a pattern makes the parts afterward
optional. The pattern form matches the sub-parts of a syntax object; the first part of
the object (the {...} in this case) is a literal® to match against, and the other parts of
the object are pattern variables. A @ followed by an identifier matches any remaining
parameters and stores them in a syntax list; thus, body contains a list of the declarations for
the class. Finally, : (fix_size fix_ size) matches an optional keyword argument; the
first fix_size is the keyword to match, and the second fix_size is a pattern variable to
hold the matched argument.

If the class does not have a body (i.e., a forward declaration) or a declared fix_size,
then the class is passed on to the original class macro in line 9. Line 11 compiles the
fix_size syntax object to get an integer value.

Lines 13-22 involve finding the original size of the class. Due to alignment issues the
sizeof operator cannot be used, since a class such as “class D {int x; char c;}” has
a packed size of 5 on most 32 bit architectures, but sizeof (D) will return 8. Thus, to
get the packed size a dummy member is added to the class. For example, the class D will
become “class D {int x; char c; char dummy;}” and then the offset of the dummy
member with respect to the class D is taken. This new class is created in lines 13—17. Here,
the @ before the identifier in the replacement template splices in the values of the syntax
list.

To take the offset of the dummy member of the temporary class, it is necessary to parse
the class and get it into an environment. However, we do not want to affect the outside
environment with the temporary class. Thus, a new temporary environment is created in
line 18 using the temp_environ macro API function. Line 19 then parses the new class
and adds it to the temporary environment. The pre_parse API function partly expands the
passed-in syntax object and then parses just enough of the result to get basic information
about symbols.

With the temporary class now parsed, lines 20-22 get the size of the class using the
offsetof primitive.

Lines 24-37 then act based on the size of the class. If the size is the same as the
desired size, there is nothing to do and the class is reconstructed without the fix_size

property (lines 24-27). If the class size is smaller than the desired size, then the class is

2ZL matches literals symbolically (i.e., not based on lexical context). Matching sensitive to lexical context

is future work.

31



reconstructed with an array of characters at the end to get the desired size (lines 28-35).
(The string_to_syntax API function simply converts a string to a syntax object.) Finally,
an error is returned if the class size is larger than the desired size (lines 36-37).

The last line declares the function parse_myclass as a syntax macro for the class
syntax form.
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Chapter 5
Quasiquoting

To be written. How high level procedural macro are implemented.
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Chapter 6
Hygiene System

Section 2.6 and 2.7 of the tutorial give two simple ways to bend hygiene. Doing any-
thing more advanced requires knowledge of how ZL’s hygiene system works. This chapter
explains ZL hygiene system (Section 6.1) and how to bend it (Section 6.2).

In some ways ZL’s hygiene system is similar to the syntax-case system [6]. However,
the data structures are different. A mark holds a lexical environment, and marks are applied
during replace rather than to the input and result of a macro transformer. Special lookup

rules search mark environments in lieu of maintaining a list of substitutions.

6.1 Implementation

During parsing, ZL maintains an environment that maps from one type of symbol to an-
other. Symbols in the environment’s domain correspond to symbols in syntax objects,
while each symbol in the environment’s range is generated to represent a particular bind-
ing. Symbols in syntax objects (and hence the environment domain) have a set of marks
associated with them. The set of marks are considered part of the symbol’s identity. A
mark is created with the new_mark primitive and applied to symbols during the replace-
ment process (via replace). During this process, each symbol is either replaced, if it is a
macro parameter, or marked. A mark also has an environment associated with it, which is
the global environment at the site of the new_mark call.

When looking up a binding, the current environment is first checked. If a symbol with
the same set of marks is not found in the current environment, then the outermost mark is
stripped and the symbol is looked up in the environment associated with the stripped mark.

This process continues until no more marks are left.

34



float r = 1.61803399;

Syntax * make_golden(Syntax * syn, Environ * env) {
Mark * mark = new_mark();
Match * m = match_f (0, syntax (A,B,ADJ,FIX), syn);
UnmarkedSyntax * r = syntax {
for (;;) { float a = A, b = B;
float ADJ = (a - r*b)/(1 + r);
if (fabs(ADJ/ (a+b)) > 0.01) FIX;
else break; }
b
return replace(r, m, mark);

}

make_macro make_golden;

int main() {
float g = 3, r = 2;
make_golden(qg, r, a, {q -= a; r += a;});

}

Figure 6.1: Example code to illustrate how hygiene is maintained. The make_golden
macro will test if A and B are within 1% of the golden ratio. If not, it will execute the code
in FIX to try to fix the ratio (where the required adjustment will be stored in ADJ) and then
try again until the golden ratio condition is satisfied.

6.1.1 An Illustrative Example

To better understand this process, consider the code in Figure 6.1. When the first binding
form “float r = ...” 1s parsed, r is bound to the unique symbol $r0, and the mapping
r => $r0 is added to the current environment. When the function make_golden is parsed,
it is added to the environment. When the new_mark () primitive is parsed inside the body
of the function, the current global environment is remembered. The new_mark () primi-
tive does not capture local variables, since it makes little sense to use them in the result
of the macro. Next, “make_macro make_golden” is parsed, which makes the function
make_golden into a macro.

Now the body of main is parsed. A new local environment is created. When
“float g = 3, r = 27 is parsed, two unique symbols $g0 and $r1 are created and cor-

responding mappings are added to the local environment. At this point, we have:
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float $r0 = 1.61803399;

[make_golden => ..., r => $r0]

int main () {
float $q0 = 3, $rl = 2;
[r = $rl, g => $g0, make_golden => ..., r => $r0]
make_golden(qg, r, a, {q -= a; r += a;});

}

The expanded output is represented in this section as pseudo-syntax that is like the input
language of ZL with some additional annotations. Variables starting with $ represent bound
symbols. The [...] list represents the current environment in which new binding forms
are added to the front of the list.

Now, make_golden is expanded and, in the body of main, we have:

[r => $rl, g => $g0, make_golden => ..., r => $r0]

for (;;) { float a’0 = q, b'0 = r;
float a = (a’0 - r'0*b’0)/(1 + r'0);

if (fabs(a/(a’0+b’0)) > 0.01)
{g =a; r +=aj}
else break; }
"0 => [r => $r0]

where ’ 0 represents amark and ' 0 => [...] is the environment for the mark. Notice how
marks keep the duplicate a and r’s in the expanded output distinct.

Now, the statement “float a’0 = g, b’0 = r”is compiled. Compiling the first part
creates a unique symbol $a0 and the mapping a’ 0 => $a0 is added to the new environment

inside the for loop. The variable g on the right-hand-side resolves to the $g0 symbol in

the local environment. A similar process is performed for the second part. We now have:

for (;;) { float $a0 = $g0, $b0 = $ril;

[b'0 => $b0, a’0 => $al, r => $rl,
q => $q0, ...]

float a = (a’0 - r'0*b’0)/(1 + r’'0);

ol
"0 => [r => $r0]
Next, the statement “float a = ...” is compiled. A unique symbol $al is created
for a and the associated mapping is added to the local environment. Then the right-hand-
side expression must be compiled. The variables a’ 0 and b’ 0 resolve to $a0 and $bo,

respectively, since they are found in the local environment. However, r’ 0 is not found, so
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the mark ' 0 1s stripped, and r is looked up in the environment for the ' 0 mark and resolves

to Sr0. We now have:

for (;;) { ...
float $al = ($a0 - $r0*S$b0)/ (1 + $r0);
[a => $al, b’0 => $b0, a’'0 => $al,
r => $rl, g => $q0, ...]
if (fabs(a/(a’0+b’0)) > 0.01)
{g = a; r += aj}
else break; }
"0 => [r => $r0]

Next, the if is compiled. The marks keep the two a variables in the expression

a/ (a’ 0+b’ 0) distinct, and everything correctly resolves. Thus, we finally have:

float $r0 = 1.61803399;
int main() {
float $q0 = 3, Srl = 2;
for (;;) { float $al0 = $q0, $b0 = $ri;
float $al = ($Sa0 - $r0*$b0)/ (1 + $r0);
if (fabs($al/ ($a0+5b0)) > 0.01)
{$q0 -= Sal; $rl += sal;}
else break; }

Hence, all symbols are correctly bound and hygiene is maintained.

6.1.2 Multiple Marks

The symbols in the expansion of make_golden only had a single mark applied to them.
However, in some cases, such as when macros expand to other macros, multiple marks are
needed. For example, multiple marks are needed in the expansion of plus_10 in Figure

6.2. In this figure, mk_plus_n expands to
macro plus_10 (X'0) { ({int x'0 = X'0; x'0 + x;}); }

where the first mark ’ 0 is applied. A second mark is then applied in the expansion of

plus_10(x) inmain:

{ ({int x'0'1 = x; x'0'1 + x'1;}) }
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macro mk_plus_n (NAME, N) {
macro NAME (X) { ({int x = X; x + N;}); }

static const int x = 10;
mk_plus_n(plus_10, x);

int main() {
int x = 20;
return plus_10(x);

Figure 6.2: Example code to show how hygiene is maintained when a macro expands to
another macro.

In particular, a second mark is added to x’ 0, making it x’ 0’ 1. This symbol then resolves
to the x local to the macro plus_10. In addition, x’ 1 resolves to the global x constant!
and the unmarked x resolves to the x local to main. Thus, hygiene is maintained in spite of

three different x’s in the expansion.

6.1.3 Structure Fields

Normal hygiene rules will not have the desired effect when accessing fields of a structure
or class. Instead of trying to look up a symbol in the current environment, we are asking to
look up a symbol within a specialized subenvironment.
For example, the following code will not work with normal hygiene rules:
macro sum(qg) {g.x + q.y;}
struct S {int x; int y;}

int £() {
struct S p;

return sum(p);

}

The problem is that sum (p) will not be able to access the fields of p since it will expand
to “p.x’0 + p.y’0” with marks on x and y. The solution is to use a special lookup

rule for structure fields. The rule is that if the current symbol with its sets of marks is

'In pattern based macros there is an implicit call to new_mark at the point where the macro was defined;
hence, the ' 1 mark captures the environment where mk_plus_10 (expanded from mk_plus_n) is defined,

which includes the global constant x.
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not found in the structure, strip the outermost mark and try again, and repeat the process
until no more marks are left. This process is similar to the normal lookup rule except
that the subenvironment associated with the mark is ignored since it is irrelevant. In the
above example, p.x’ 0 in the expansion of sum(p) will resolve to the structure field x in
struct S.

A similar strategy is used when accessing members inside a module or user type (in-

cluding classes). For example, looking for X: : £’ 0 () will also find X: : £ ().

6.1.4 Importing Symbols from A Module

The handling of marks when importing symbols of a module is tricky. Importing a module
in which the name is provided as a parameter should not expose additional symbols that
are not normally visible inside the macro. On the other hand, if a macro imports a module
in which the name is not a parameter its symbols should only visible to the macro and not
outside of the macro. The following example illustrates which imported symbols should be

visible from where where:

module X {int x 1;}

module Y {int y 2;}
macro foo (VAR,MOD) {
module Z {int VAR =
int z = 4;
import X; import MOD; import Z;
printf ("$d %d %d\n", x, VAR, z);
// Y::y is not visible

3;
}

int main() {
foo(v,Y);
printf ("$d %d %d\n", y, v);
// X::x and Z::z not visible

The context of the imported symbols is defined by the marks that are stripped in order to
find the module. More specially, the stripped marks are applied to every symbol imported.
In the above example when foo imports the module X the macro’s mark is stripped, this
mark is then applied to X: : x making the imported symbol visible to the macro but not the

caller. In contrast when the module Y (from the pattern variable MOD) is imported in the
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expansion of foo (v, Y), no marks are applied to y thus is is visible to the caller but not
the macro. Finally, when the module Z is imported in the macro no additional marks are
applied since the module was defined by the macro and hence the module name already has
a mark on it, and thus no marks are stripped to resolve the modules symbol. If additional
marks were applied when importing the Z module the symbol v (from the pattern variable

VAR) will not be visible outside the macro.

6.2 Bending Hygiene

6.2.1 Exporting Marked Symbols

One common reason to bend hygiene is to make macro introduced symbols visible outside
the macro. To archive this effect ZL provided a way to export symbols introduced by the
macro.

As already mentioned in Section 2.6, ZL allows top-level symbols to be exported in

pattern based macro (and simple procedural macros) by using:
macro foo() :(*) {/* body */}

Additionally, individual symbols can be exported. For example, to export the symbols, x

and y:
macro bar() :(x,y) {/* body */}

Exporting is handled using two primitives that can be used directly by lower level pro-

cedural macros.

Exporting Specific Symbols. Exporting specific symbols is handled using the

macro_export primitive. For example, the macro bar could be written as:

Syntax * bar(Syntax * call, Syntax * parms) {
Mark * mark = ...;
Match * repl = match_f (NULL, syntax [NAME], call);
return replace(syntax {
__raw(macro_export NAME (symbol x) (symbol y));
/* body */
}, repl, mark);
}

make_macro bar;
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(As macro_export is not a form that is commonly used ZL does not provide support for it
in the higher level syntax, hence the __raw form is used, which switches the syntax to the
lower level s-expression form until the end of the current statement.)

The use of macro_export involves the use of a pattern variable NAME that is used to
get the context in which to export the symbols. After expansion the macro_export line

would become:
__raw(macro_export’ bar (symbol’ x’') (symbol’ y'))

where marks are applied to x and y and foo gets the context of the call site, which for most

cases is the empty context (i.e., no marks).

Exporting Top-Level Symbols. Exporting all top-level symbols with a specific mark
is handled by calling the new_mark_f function directly and a special form of the
macro_export primitive.

The full version of the new_mark_f function is:

Mark * new_mark_f (EnvironSnapshot *, bool export_tl,
Context * export_to, Context * also_allow);

If export_t1 is true, than all symbols top-level like symbols that contain the newly created
mark are exported to export_to, this includes structure fields and module symbols.

If a macro is expanded inside a function than any symbols created in the outermost
scope of the expansion are not exported as the environment inside a function is not a top-
level one. Since exporting these symbols is often a desirable behavior, ZL provides a

special form of the macro_export primitive which is used as follows:

__raw(macro_export NAME tl_this_mark)

This form will export all symbols in the same scope where the directive was used. Unlike
with the symbol directive, any symbols in an inner scope, are not exported. For example,
given
__raw(macro_export NAME tl_this_mark)
int x;
{
int y = 2;
X =Yy
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the symbol x will be exported, but y will not.

For simplicity of the implementation only marks created with export_t1 set to true
can be used with the t1_this_mark directive, in addition the context of NAME is ignored
and the context of export_to (when creating the mark) is used instead.

Putting it all together, the macro foo () could be written as:

Syntax * foo(Syntax * call, Syntax * parms) {
Match * repl = match_f (NULL, syntax [NAME], call);
Mark * mark = new_mark_f (environ_snapshot (), true,
get_context (repl->var (syntax NAME)), NULL);

return replace(syntax {

__raw(macro_export NAME tl_this_mark);

/* body */
}, repl, mark);

}

The also_allow allow paramter is most useful in the context of macro expanding to other

macros and is thus not used here.

Implementation. The exporting of symbols is handled by creating an alias to the original
symbol in the desired context when a marked symbol is defined. This way uses of the
symbol inside the macro will unconditionally bind to the symbol the macro defined, while
also making the symbol visible outside the macro.

When a new symbol is introduced by importing a module the additional marks are first
applied as outlined in Section 6.1.4. Then, after the marks are applied, the new symbol
is considered for exporting using the same criteria as if the symbol is defined normally
except that the t1_this_mark directive is never used. This directive is not used because it
is unclear how it should be handled as symbols imported from a module are normally not

considered to be in the same scope.

6.2.2 Fluid Binding

The other common case for wanting to bend hygiene is to make symbols visible to the
macro parameters. For this ZL provides fluid_binding, which allows a variable to take
its meaning from the use site of a macro rather than the macro’s definition site, in a similar
fashion to define-syntax-parameter in Racket [8, 4].

Section 2.7 of the tutorial gave one example of the need for f1uid_binding; another

prime example is the special variable this in classes. Variables in ZL are lexically scoped.
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Type Context with related functions:
Context * get_context (Syntax *)
Syntax * replace_context (UnmarkedSyntax *, Context ¥*)

Figure 6.3: Visibility API.

For example, the code:

int g(X *);
int £() {return g(this);}
int main() {X * this = ...; return f£();}

will not compile because the this defined in main is not visible in f, even though f is
called inside main. However, if the this variable was instead dynamically scoped, the
this in main would be visible to f.

Normal hygiene rules preserve lexical scope in a similar fashion, such that:

int g(X *);
macro m() {g(this);}
int main() {X * this = ...; return m();}

will also not compile. Attempts to make this work with get_ and replace_context will
not compose well [4]. What is really needed is something akin to dynamic scoping in the
hygiene system. That is, for this to be scoped based on where it is used when expanded,
rather than where it is written in the macro definition. This can be done by marking the
this symbol as fluid using fluid_binding at the top level and then using f1uid when

defining the symbol in local scope. For example:

fluid_binding this;

int g(X *);
macro m() {g(this);}
int main() {X * fluid this = ...; return m();}

will work as expected. That is, the this in m will bind to the this in main.

6.2.3 Replacing Context

When all other methods of bending hygiene fail, ZL provides the analog to
datum->syntax-object in the syntax-case expander [5] in the form of two functions:
get_context and replace_context, shown in Figure 6.3, which changes the context (ie

the set of marks) associated with a symbol.
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For example, a macro defining a class needs to create a vtable that is accessible outside
of the macro creating the class. The get_context function gets the context from some
symbol, generally some part of the syntax object passed in, while replace_context re-
places the context of the symbol with the one provided. For example, code to create a

symbol _vtable that can be used later might look something like:

Match * m = match_f (0, raw_syntax (name ...), p);

Syntax * name = m->var(m, syntax name);

Context * context = get_context (name);

Syntax * _vtable = replace_context (syntax _vtable, context);

Here name is the name of the class that is passed in as m. The name symbol is extracted into
a syntax object so that it can be used for get_context. The replace_context function
is then used to put the symbol _vtable in the same context as name. Now _vtable will

have the same visibility as the name symbol, and thus be visible outside the macro.

6.2.4 Gensym

ZL does not provide the equivalent to Lisp’s gensym as it is simply not needed. In the rare

case a truly unique symbol is needed a fresh mark, with an empty context, can be used:

Syntax * name = replace(syntax anon, NULL, new_empty_mark());
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Chapter 7

Procedural Macro Implementation and

State Management

In order to use procedural macros effectively, it is necessary to know a little bit about
how they are implemented. This section gives the details on how procedural macros are

implemented, the use of macro libraries, and how to share state between procedural macros.

7.1 The Details

The current ZL compiler does not contain an interpreter; thus procedural macros are com-
piled and then dynamically linked into the compiler when the macro is first used. A simple
dependency analysis is done so that any components that the procedural macro depends on
(and are not already compiled and linked in) are also compiled at the same time.

In addition, ZL determines the role of each function as for run-time or compile-time
only to avoid included macro related functions in the executable. A compile-time only
function is any function that uses part of a macro API, or one that depends on a function
which does.

The dependency analysis that determines which code to include when a procedural
macro is first used is separate from the dependency analysis used to determine a role. Thus,
it is possible for a function to be used at both run-time and compile-time if the function is
used by both a normal (i.e., run-time) function and a compile-time only function. Such a

function will be considered a run-time function even though it is also used at compile time.
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7.2 Macro Libraries

Since the compilation of a complicated procedural macro can take a decent amount of time,
ZL also provides a mechanism for precompiling macros ahead of time via macro libraries.
A macro library is similar to a normal library, except that the code is loaded while compiling
the program, instead of during the programs execution.

A macro library is a collection of code compiled with the -C option. The compilation
creates a shared library with the -fct.so extension; for example, if the code for the li-
brary was contained in the file 1ib.z1, the shared library will be called 1ib-fct.so. The
macro library is then used by importing the same file (used to create the library) using the
import_file primitive. Importing will: 1) parse enough of the macro library code to get
the function prototypes and related information; and 2) load the related shared library. A
header file can also be provided (with an extension of .z1h), which will be read in instead
of the full macro code.

Normally, when new_mark () (which uses the environ_snapshot () primitive) is used,
the environmental snapshot is taken at the place in the code where the syntax is used.
(Basically, environ_snapshot () gets replaced with a pointer the the current environment
as the procedural macro is being parsed.) Unfortunately, ZL does not have the ability to
serialize the environment, which means a snapshots can only be taken for code that is
compiled in the same translation unit (also known as the compilation unit). This creates a
problem when a procedural macro is compiled into a library. To work around this problem
the user can declare that the environmental snapshot is taken where the macro is declared,
rather then where environ_snapshot () is used, by adding :w_snapshot to make_macro,

for example:

make_syntax_macro foreach :w_snapshot

Since, unlike the function body, the make_macro declaration is always read as the program
is being compiled, this ensures that there is always a point where the snapshot can be taken.
In the rare cases when this strategy will not work, it is possible to store a snapshot of an

environment in a variable. For example, if:

EnvironSnapshot * prelude_envss = environ_snapshot ();
is found in a header file, than ZL will ensure that the value of global variable
prelude_envss is a pointer to an environmental snapshot in the current compilation

unit. Within the macro library, this variable can then be used with an alternative form

of new_mark, which accepts a pointer to EnvironSnapshot as its first parameter.
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When macro libraries are used no automatic dependency analysis is done; everything
included in the macro library is assumed to used at compile-time only. If it is necessary
to use the same code at both compile-time and run-time, special previsions need to be
made, such as moving the shared code into a separate file so that it can be linked in at both
compile and run time. Linking compile-time only functions into the executable will fail

with undefined symbols.

7.3 State Management

Macros may maintain global state in one of two ways. The first way is to simply use global
variables; any state stored within a global variable will be accessible to any macros used in
the same compilation, even if they are compiled and linked in separately. The other way to
maintain global state is to store the information inside of a top-level symbol via the use of
symbol properties, the details of which are provided in the next section.

Using either method, state is only maintained during within the compilation unit. Sep-

arate provisions need to be made to store state between compilations.

7.4 Symbol Properties

Any top-level symbol can have any number of properties associated with it. The value of
the propriety is simply a syntax object. Symbol properties are used extensively by the class
macro to store information about the class which is then used by the parent class and when
expanding method definitions defined outside of the class.

Figure 7.1 shows the syntax for the add_prop primitive used for adding symbol prop-
erties. Note that add_prop is not an API function; it is part of the syntax returned by the
macro. In addition, the add_prop primitive is always used in the lower level s-expression
form (i.e., created using raw_syntax instead of syntax) in order to be able to precisely
control the syntax object being added. Such control would not be possible in the higher
level syntax due to reparsing.

The three argument form of add_prop is used to add properties to already existing top-
level symbols. For example the class macro adds the propriety is_method to the macro

representing methods by using:

(add_prop (fun method (. @parms)) is_method true)
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Syntax to add properties to existing symbols:
(add_prop SYMBOL PROPERTY-NAME VALUE)

Syntax to add properties within modules:
(add_prop PROPERTY-NAME VALUE)

Macro API function to retrieve properties:
Syntax * get_symbol_prop (UnmarkedSyntax * symbol, UnmarkedSyntax * prop,
const Environ *)

Figure 7.1: Symbol properties syntax and API.

where method and @parms are pattern variables. The two argument form of add_prop is
used within a module or user type to add properties to the module.

To retrieve properties from a symbol the macro API function get_symbol_prop can be
used. The function will return NULL if the property does not exist for that symbol.

When used in combination with stash_ptr and extract_ptr arbitrary objects can be
stashed away for latter retrieval. For example the class macro uses this to store a pointer
to the class used to implement the class in the module for the class. This pointer is then
extracted when expanding method definitions defined outside of the class, thus greatly

simplifying the implementation.
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Chapter 8

ABI Related APIs

This section gives additional procedural macro API components that are important to cre-

ating classes and controlling the ABI.

8.1 User Type and Module API

Within the class macro it is necessary to get some basic properties on data member types
and the parent class. In particular it is necessary to determine if the type is a user type with
any special methods such as a default constructor or destructor. The API for user types and
modules is shown in Figure 8.1.

The constructors user_type_info and module_info get the corresponding symbol
from a symbol name. From a user_type it is also possible to get the underlying module
using the module method.

The have_* user type methods are used to check if a data-member type has any special
methods. The class macro uses this information when building the corresponding special
method. For example if any the data-members have the assign method is is necessary to

create an assign method for the class.

8.2 User Type Builder

Due to the need to get information about the user type as it is being built, the class macro
builds the user type directly and then returns a syntax object with the compiled syntax
object embedded directly. The builder API is shown in Figure 8.2.
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Constructors:
UserType * user_type_info(Syntax *, const Environ *)
Constructor: Module * module_info(Syntax *, const Environ *)

Type UserType with methods:
Module * module ()
bool have_default_constructor ()
bool have_copy_constructor ()
bool have_assign()
bool have_destructor ()

Type Module with methods:
bool have_symbol (const Syntax *)

Figure 8.1: User type and module APIL

Type UserTypeBuilder with constructor:
UserTypeBuilder * new_user_type_builder (Syntax * name, Environ * env)
and methods:
void add(Syntax *)
Syntax * to_syntax()
bool have_default_constructor ()
bool have_copy_constructor ()
bool have_assign ()
bool have_destructor()
and members (read only):
Environ * env
UserType * user_type

Figure 8.2: User type builder API.
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A new builder is created using new_user_type_builder. Components are added us-
ing the add method. Finally, the to_syntax method is used to finalize the user type and
return a syntax object with the compiled user type embed within.

The have_* methods are used for querying the user type as it is being built. They
are needed because, due to overloading, it is difficult for the class macro to determine if
a constructor or assignment operator is provided that satisfies the requirements of a copy
constructor or copy assignment operator, restively. Thus, after all the methods are added to
the user type, the class macro uses these methods to check for the existence of the special
methods and can act appropriately.

The user type builder also exposes several read only members. The most important
one is the local environment inside the module. This environment is needed when partly
expanding class components, for example, in the following code:

typedef const char * iterator;
iterator begin();

the second line, will not expand correctly unless the iterator type is in the environment.

8.3 The ABI Switch

Since class layout is a key component to the ABI, a new ABI can be created by extending
(or overriding) the class macro and then remapping the class syntax object to use the new
macro. Another way to define a new ABI is to register the ABI so that it can be used with
the ABI switch. The ABI switch is an extension of C++ extern with an additional part for
the ABI. For example:

extern "C++" : "gcc"
class C {...};

causes the class C to use the “gcc” ABI. In addition to class layout, the ABI switch also
controls name managing and other key components of the ABI, which can differ between
compilers.

A class macro is registered with the ABI switch by compiling it into into a macro library
and defining the symbols _abi_list and _abi_list_size. The _abi_list variable is
an array of AbiInfo and _abi_list_size is the array size. The struct AbInfo is defined

as:
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struct AbiInfo {
const char * abi_name;
MangleFun mangler;
MacroLikeFun parse_class;
const char * module_name;
Module * module;
b
The abi_name member is the name of the ABI, and parse_class points to the macro
function defining the class. The mangler member is part of the mangler ABI and will be
described the next section.
Class layout and mangling are two important parts of the ABI. Another important part
is the implementation of new and delete. To support any ABI specific implementations a
module name can be provided. Any symbols is this module will shadow any global symbols
when the ABI is in effect; thus ABI specific new and delete macros can be defined. In
addition the ABI info is tied to a user type so a class is always allocated and deleted with
the class ABIs new and delete.
For example the macro library implementing the “gcc” ABI has the following lines:
unsigned _abi_list_size = 1;

AbiInfo _abi_list[1l] = {{"gcc", NULL, parse_class_gcc_abi,
"gcc_abi_info", NULL}};

with the following lines in the header file:

module gcc_abi_info {
macro alloc(type, size) {...}
macro free(type, ptr) {...}
}
where alloc and free are called by the new and delete primitives, receptively.
The final member module is filled in by ZL when the macro library is read in, by

looking for a module with the name module_name.

8.4 Mangler API

The final aspect of the ABI that ZL can control is the mangling scheme. The API to
implement the alternative manglers is part of ABI switch implementation just described.

The function type MangleFun is defined as:

StringObj * (*MangleFun) (Symbol *)
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class StringBuf ({

StringBuf operator+= (const StringBuf & s);
StringBuf prepend(const char * str);

int printf(const char * format, ...);

size_t size() const;

bool empty () const;

char * data();

StringObj * freeze();

public:

StringBuf () ;
StringBuf (const char * s);
StringBuf (const char * s, unsigned size);
StringBuf (const StringBuf & other);
StringBuf & operator= (const char * other);
StringBuf & operator= (const StringBuf & other);
StringBuf & append(char * start, char * stop);
StringBuf & operator+= (const char * s);

&

&

.o}

Figure 8.3: Overview of the StringBuf class.

The mangler takes a symbol and transforms it into a string of the form of a pointer to
StringObj. The string object is expected to build up a string using the StringBuf and
then call the freeze method, which returns a StringObj. An overview of the StringBuf
class is given in Figure 8.3.

In order to transform the string the mangler needs access to a large number of proper-
ties about the symbol. The most important of these properties is the parameter types for
function symbols as they are the primary components of the mangled name. An overview
of the API used for getting symbol properties is given in Figure 8.4.

Once the mangler function is defined it is necessary to register it with ABI switch.
Different components of the ABI may be given in different libraries, and any NULL fields
will simply be left alone if there where defined elsewhere for that ABI. For example, the

GCC mangler is defined with the following line:

unsigned _abi_list_size = 1;
AbiInfo _abi_list[1] = {{"gcc", to_external_name, NULL, NULL, NULL}};
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Type Symbol with methods:
const char * name()
const char * unig_name ()
Type * type()
FunType * fun_type()
Syntax * prop(UnmarkedSyntax * prop)

Type Type with methods:
Type * subtype|()
int qualifiers()
bool is_scalar()
bool is_qualified()
bool is_pointer()

Constants:
TypeQualifier CONST =1
TypeQualifier VOLATILE = 2
TypeQualifier RESTRICT = 4

Type FunType with methods:
Type * ret_type()
unsigned num_parms (const FunType ¥*)
Type * parm_type (unsigned num)

Figure 8.4: Overview of the symbol API
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Chapter 9
Classes and User Types

A user type (see 2.8), which is ZL's minimal notion of a class, consists of two parts: a
type, generally a struct, to hold the data for the class instance, and a module, which is
collection of symbols for manipulating the data.

As an example,

class C { int 1i;
int f(int Jj) {return i + 3;} };

expands to:

user_type C {

struct Data {int 1;};

associate_type struct Data;

macro 1 (:this ths = this) {(*(C *)ths)..1i;}

macro f(j, :this ths = this) {f‘internal(ths, Jj);}

int flinternal (C * fluid this, int j) {return i + 7;}

}
and creates the class C.

To allow user types to behave like classes, member-access syntax gets special treatment.
For example, if x is an instance of the user type above, x.1i calls the i macro in the C
module, and it passes a pointer to x as the this keyword argument. This protocol allows
x.1 to expand to something that accesses the x field of the underlying struct, which can
be done using the special syntax x..i. Thus, i effectively becomes a data member of
x. Methods can similarly be defined. For example, x.f (12) calls the £ macro with one
positional parameter and the this keyword argument.

The default value for the this keyword argument is necessary to support the implicit

this variable when data members and methods are accessed inside method definitions.
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The function f‘internal, which implements the f method, demonstrates this. (The
‘internal simply specifies an alternative namespace for the £ symbol so that it does not
conflict with the £ macro.) The first parameter of the function is this, which puts the sym-
bol into the local environment. When 1 is called inside the function body the this keyword
argument is not supplied, since we are not using the member access form. Therefore, the
this keyword argument defaults to the this specified as the default value, which binds to
the this in the local environment. The fluid keyword (see 6.2.2) is necessary to make
the this variable visible to the i macro; with normal hygiene rules, binding forms at the
call site of a macro are invisible, as symbols normally bind to whatever is visible where the
macro was defined.

User types can also be declared to have a subtype relationship. The declaration specifies
a macro for performing both casts to and from the subtype. Subtypes are used to implement

inheritance. For example the class:
class D : public C { int J; };
expands to something like:

user_type D {
import C;
struct Data {struct C::Data parent; int j;};
associate_type struct Data;
macro _up_cast (ths) {&(*ths)..parent;}
macro _down_cast (other) {(D*)other;}
make_subtype C _up_cast _down_cast;
macro J (:this ths = this) {(*(D*)ths)..];}

New symbols defined in a module are allowed to shadow imported symbols, so the fact
that there is also a Data in C does not create a problem. Also, note that there is no need to
redefine the data member and method macros imported from C, since the existing ones will
work just fine. They work because the class macro makes sure that the ths macro parameter
is cast to the right type before anything is done with it. For example, if y is an instance
of the type D, then y.1i expands to (* (C*)&y)..1i. When ZL tries to cast &y to C*, the
D::_up_cast macro is called and the expression expands to ( (*& (*&y) ..parent))..1,
which simplifies to y. .parent..i. Method calls expand similarly, except that the cast is
implicit when the ths macro parameter is passed into the function.

If a class contains any virtual methods, then a vtable is also created. The macro that

implements the method then looks up the function in the vtable instead of calling it directly.
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For example, if £ was a virtual function in the class C, then the macro for £ would look

something like:
macro f(j, :this ths = this) {_vptr->f(ths, J);}

where _vptr is a hidden member of the class that contains a pointer to the virtual table.
The vtable is also a class, so to implement inheritance with virtual methods a child’s vtable
simply inherits the vtable of the parent. To override a method, the constructor for the child’s

vtable simply assigns a new value to the entry for the method’s function pointer.
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Appendix A

Implementation Status and Performance

The current ZL prototype supports most of C and an important subset of C++. For C, the
only major feature not supported is bitfields, mainly because the need has not arisen. C++
is a rather complicated language, and fully implementing it correctly is beyond the scope
of our research. We aim to implement enough of C++ to demonstrate our approach; in
particular, we support single inheritance, but currently do not support multiple inheritance,
exceptions, or templates.

As ZL is at present only a prototype compiler, the overall compile time (in version 0.3)
when compared to compiling with GCC 4.4 is 2 to 3 times slower. However, ZL is designed
to have little to no impact on the resulting code. ZL’s macro system imposes no run-time
overhead.

The ZL compiler transforms higher level ZL into a low-level S-expression-like lan-
guage that can best be described as C with Scheme syntax. Syntactically, the output is very
similar to fully expanded ZL as shown in Figure 3.2. The transformed code is then passed
to a modified version of GCC 4.4. When pure C is passed in we are very careful to avoid
any transformations that might affect performance. The class macro currently implements
a C++ ABI that is comparable to a traditional ABI, and hence should have no impact on

performance.

A.1 C Support

To demonstrate that ZL can support C programs, two well-known programs were compiled
with ZL: bzip2 and gzip. Bzip2 was compiled without modifications, but gzip required

some minor modification because it was an older C program and used some C syntax that
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is not a subset of C++: K&R-style function declarations were transformed into the newer
ANSI C style, and one instance of new as a variable was renamed to new_.

Overall, compile times were 2 to 3 times slower with ZL in comparison to compiling
with GCC 4.4. However, both programs compiled correctly, produced correct results, and

had similar run times to the GCC-compiled versions.

A.2 C++ Support

To evaluate ZL’s suitability to compile C++ programs, we chose to compile randprog [7],
which is a small C++ program that generates random C programs. Randprog uses inheri-
tance and other important C++ features, such as overloading and nondefault constructors.
In addition, it uses a few C++ features that ZL does not yet support, so we changed rand-
prog in small ways to compensate. These changes include reworking the command-line
argument parsing, which used of a library that requires many modern C++ features; ex-
plicit instantiation of vector instances; changing uses of the for_each template function
into normal for loops; and reworking some functions to avoid returning complex objects.

Randprog was verified to produce correct results by fixing the seed and comparing the
generated program with a version of randprog compiled with GCC for several different
seeds. It was also instrumented with Valgrind and found free of memory errors.

Overall compile time was around 2.5 times slower with ZL. when compared to GCC
4.4. A direct run-time performance comparison is of limited usefulness, since ZL does not
use the same C++ library as GCC, but the runtime performance of the ZL-compiled version

of randprog was up to twice as fast as the GCC-compiled version.

A.3 Debugging Support

In error messages, ZL provides a full backtrace of what was expanded from where in the
case of a compile time error involving macros.

ZL provides very basic source level debugging support. ZL makes an effort to keep
track of line numbers and passes this information onto the debugger to provide for mean-
ingful backtrace. In addition, variable names are also available, but in most cases the name

has been mangled. For most cases this means adding a $ and a number to the name.
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Appendix B

Roadmap

The last chapter gave an idea of where ZL is now, this chapter will give an idea of where |

see ZL heading.

High Level Goals

¢ In addition to supporting C and C++ syntax, support ZL specific syntax. The ZL spe-
cific syntax will be like C but provide more sane syntax for declaration for example:
var x : int = 20;
fun £ (x : int, y : int) : int {...}
Also when in ZL mode all code will be put into a module by default so that functions

(and likely types) don’t need to be declared before they are used.

e Extend User Types be able to support algebraic data type, which includes support for
pattern matching cases. There is a lot of overlap between classes and algebraic data

types and I intend to unify the two concepts.

e Once algebraic data types are implemented, work on rewriting the ZL. compiler in
ZL itself. The ZL compiler uses a lot of advanced C++ features that won’t be im-
plemented it ZL yet; however, it is my hope that with the combination of advanced
macros and algebraic data types I will be able to find alternative—and maybe even

better—means of archiving the same goal.

60



Appendix C

ZL Implementation Details

This chapter gives the implementation details of the interesting parts of ZL.

C.1 Fluid Binding Implementation

The fluid_binding form (see Section 6.2.2) bends hygiene by allowing a variable to
take its meaning from the use site rather than from the macro’s definition site. It changes
the scope of a marked variable from lexical to fluid and is used together with the fluid
keyword, which temporarily binds a new symbol to the fluid variable for the current scope.

The fluid_binding form inserts a fluid-binding symbol into the environment that
serves as an instruction to perform the lookup again. The symbol consists of the instruc-
tion and a unique symbol name to perform the second lookup on; the name is constructed
by taking the symbol name and applying a fresh mark to it (with an empty environment).
For example, “fluid_binding this” inserts the mapping this => fluid(this’0) into
the environment, where the fluid-binding symbol is represented as f1uid (SYMBOL’ MARK) .
The “fluid VAR” form then replaces the variable VAR with the unique symbol name asso-
ciated with the fluid binding. This has the effect of rebinding the f1uid_binding variable
to the current symbol for the current scope. For example, “X * fluid this” becomes
“X * this’0” and this’ 0 gets temporarily bound to the local symbol $this0. Finally,
whenever a symbol resolves to something that is a fluid binding the symbol will be resolved
again, this time using the unique symbol name in the fluid binding. For example, this will
first resolve to f1luid (this’ 0), which then resolves to Sthis0.

To see why this method works, consider the parsing of £ *internal from the expansion
of class C given in Section 2.8:
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fluid_binding this;
user_type C {

macro 1i(:this ths = this) {(*(C *)ths)..i;}
macro f(j, :this ths = this) {f‘internal(ths, j);}
int flinternal(C * fluid this, int j) {return i + j;}

The fluid_binding form (given in the prelude) is first parsed and the mapping
“this => fluid(this’0)” is added to the environment where ’ 0 is an empty mark. The
macros 1 and £ in the user type C are also parsed and we now have:

user_type C {
[f=> ..., 1 => ..., this => fluid(this’0)]
int flinternal (C * fluid this, int j) {return i + j;}
}
Now f‘internal is parsed. Since the first parameter has the f1uid keyword the symbol

this is looked up in the environment and fluid this becomes this’ 0 giving:
int f'internal (C * this’0, int ) {...}

The parameters are now parsed and added to the environment and the body of £ ‘internal
is expanded:
int f'internal (C * $this0, int $3j0) {
[ => $j0, this’0 => $this0, £ => ..., i => ..., this => fluid(this’0)]
return (*(C *)this’l)..i + J;
}
"1 =>[..., this => fluid(this’0)]
The body of f ‘internal is now parsed. The variable this’ 1 (from the expansion of
1) first resolves to the fluid symbol fluid (this’0), which temporarily becomes this’0
and then resolves to $this0. The rest of £ ‘internal is also parsed giving:
int f'internal (C * $thisO, int $7j0) {
return (*(C *)$this0)..i + $30;
}
Hence, the this variable in the macro i gets resolved to to the this parameter in

f'internal as intended.
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C.2 The Reparser

Supporting Scheme-style macros with C-like syntax turns out to be a hard problem for two
reasons. The primary reason, as mentioned in Section 3, is that ZL does not initially know
how to parse any part of the syntax involved with macros. The other and less obvious
reason is that when given a syntax form such as “syntax (x * y)”, ZL does not know
if x and y are normal variables or pattern variables until the substitution is performed. If
they are normal variables, then it will be parsed as (exp x * y), but if they are pattern
variables, it will be parsed as (exp (mid x) * (mid y)) where mid (macro identifier)
is just another name for a pattern variable. ZL solves the former problem by delaying
parsing as much as possible, which works nicely with ZL’s hygiene system by reducing the
complexity of macro explanation from quadratic to linear. ZL solves the latter problem by

installing special hooks into its Packrat parser.

C.2.1 The Idea

As already established, the syntax () and syntax {} forms create syntax objects with
raw text that cannot be parsed until ZL knows where the syntax object will ultimately be
used. Thus replace is unable to perform any replacements. Instead, replace annotates
the syntax object with with a set of instructions to apply later that includes two bits of
information: (1) the mark to apply, and (2) the substitutions to apply.
For example, given the code:
int x;
Syntax * plus_x(Syntax * syn, Environ * env) {
Match * m = match_f (0, syntax (y), syn);

return replace(syntax (x + y), m, new_mark());

}

make_macro plus_x;

the call plus_x(z) resultsin (" ()" "x + y"){’0; y => (parm "z")} where the {}
represents the annotation and parm is a built-in macro (see Section 3.4) to indicate the need
to reparse. The first part of the annotation is the mark and the second is the substitution to
apply. Thus the substitution is delayed until ZL knows where the call to plus_x will be
used.

Eventually, the annotated syntax object will need to be parsed, which requires two steps.
First the raw text needs to be parsed using the Packrat parser. Second the instructions in

the annotations need to be applied.
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Parsing the raw text creates a problem since ZL does not know which identifiers are
pattern variables. Solving this problem involves a special hook into the Packrat parser,
which is the purpose of the special <<mid>> operator shown in the grammar (Figure 3.3).
The relevant bits of the grammar (with some extra required productions) are these:

EXP = <exp> {TOKEN}+;

TOKEN_ = <<mid PARM>> {MID} / {ID} / ...

MID = {[@$\a_][\a_\d]*} SPACING;

PARM = {STMT} EOF / {TOKEN} EOF / {EXP} EOF;
The <<mid>> operator is a special operator that matches only if the identifier being parsed
is in the substitution list. When a MID matches, and the pattern variable is of the type
that needs to be reparsed (i.e., matched with a syntax form), the parser adds a note as to
how to reparse the macro parameter. This is either the production where it matches or the

production as given in the <<mid>> instruction. For example, when parsing
("()" "X + y"){IO; y => (parm "Z")}

as an expression, the parser is able to recognize x as an identifier and y as amid. During the
parsing of x the MID production is tried but it is rejected because x is not a pattern variable,
yet when vy is tried, it matches the MID production since y is a pattern variable. Thus the

result of the parse is:
(exp x + (mid y PARM)){’0; y => (parm "z")}

After the raw text is parsed, the instructions in the annotation are applied to the subparts;
if the syntax object represents raw text then the instructions are simply pushed down rather

than being directly applied. In the above example this process will result in:
(exp’0 x'0 +'0 z)

That is, marks are applied and (mid y PARM) becomes z. During the substitution, the
string z is reparsed using the PARM production noted in the second argument of mid. Hence,
the string z becomes the identifier z.

The results of the reparse are then expanded and parsed as before. Marks are used
as described in Section 6.1, but with the additional rule that if no marks are left and a
symbol is still not found then it is assumed to be associated with a primitive form. For
example, exp’ 0 is assumed to represent the built in exp macro, since exp is not in the

current environment. Since the result is an exp, it will be expanded again to become

(plus x'0 z)

which will then be converted into an AST.
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C.2.2 Additional Examples

In the previous example, the result of the reparse is a fully parsed string, but this is not
always the case. For example, if the macro plus_x were instead plus_2x, and the call

plus_2x(z) expanded to:
("O" "2*x + y"){"0; y => (parm "z")}

the result will first parse to:
(exp ("()" "2*x") + y){'0; y => (parm "z")}

with "2*x" left unparsed. Applying the annotations will then result in:
(exp’0 ("(O" "2*x"){"0; y => (parm "z")} + z)

That is, since the " () " syntax objects represents raw text, the instructions are pushed down
on that object rather than being directly applied.

Also, in the same example, the macro parameter was just an identifier and the special
PARM production is not needed, as it would be correctly parsed as a TOKEN. However, this is
not always the case. For example, if the call to plus_x were instead plus_x (z + 2) the

string “z + 2” would need to be parsed as a PARM since it is not a token.

C.3 Parser Details

To allow for easily adding lexical extensions, ZL uses a Packrat parser with the grammar
specified as an extended PEG (see 3.2). When considering what parsing technology to use
we also considered GLR (Generalized Left-to-right Rightmost derivation) parsing. GLR
parsing differs from Packrat parsing in that the grammar is specified as a CFG (Context
Free Grammar). Unlike specialized LR(k) or LL(k) parsers, a GLR parser accepts any
CFG and conflicts are handled by creating multiple parse trees in the hope that the conflict
will latter be resolved. Unfortunately, there is no way to know if the conflict will ultimately
be resolved, as determining if a CFG is unambiguous is an undecidable problem. The
worst case performance of a GLR parser is O(n3), but for most grammars the performance
in practice can be made near linear. In contrast and because a PEG is a specification of
how to parse the text, Packrat parsing is always unambiguous; however, the parse may not
always be what was intended. In addition, Packrat parsing is guaranteed linear (although
with a large constant factor) due to memorization. Packrat parsing also avoids the need for

a separate lexer pass as it naturally works well with raw characters (since the PEG language
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What H Before \ After H Improvement

Avg. Run Time 1.90 sec. 0.156 sec. || 12.2 times
Avg. Max Heap Usage || 57.61 MiB | 4.22 MiB | 13.7 times

Table C.1: Improvements in run time and memory usage due to parser optimizations.

is very close to the language of regular expressions used by traditional lexers). For all these
reasons, and others, we chose Packrat parsing over GLR parsing.

We also chose to use Packrat parsing because the memorization can also be used to
avoid quadratic parsing times with ZL’s frequent reparsing of strings. For example, when
parsing (x* (y+z)) as (" ()" "x*(y+z)"), the PAREN production is used on (y+z), since
ZL must recognize the grouping. When (" ()" "x* (y+z)") is expanded, the same PAREN
production is used. Therefore, if the memorization table for the PAREN production is kept

after the initial parse, there will be no need to reparse (y+z).

C.3.1 Performance Improvements

For ease of implementation, and unlike other Packrat parser such as Rats! [13], ZL’s PEG
is directly interpreted. (In other words, ZL’s parser is not a parser generator.) The ini-
tial implementation of the parser was a major bottleneck. However, after making several
key improvements we were able to improve the performance and memory usage of ZL by
over an order of magnitude as shown in Table C.1. The table shows numbers from a sim-
ple benchmark that consisted of compiling several nontrivial programs. These programs
consisted of compiling ZL’s prelude as well as several non-trivial test cases (from the ex-
amples in the first authors dissertation [1]). The tests were run on an AMD Athlon(tm) 64
3000+ Processor with 1 GiB total RAM, and ZL was compiled with GCC 4.4 with basic
optimization enabled.

Most of the improvements are from using better data structures. However, there were
several improvements worth noting. A summary of these improvements is shown in Ta-
ble C.2.

The first improvement involved how errors are handled. Using the techniques outlined
in Bryan Ford’s Master’s thesis [10], ZL makes a basic attempt to find the most probable
reason that caused the parse to fail. This, unfortunately, involved keeping a lot of state
around, which would normally not be needed. Hence, a big improvement was made by

simply not keeping this state around during normal parsing. If the parse failed, the text
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’ Improvement \ Run Time Reduction \ Heap Usage Reduction

Don’t Keep Error State 2.15 times 2.13 times
Keep State Between Reparses | 1.21 times 1.14 times
Mark Transient Productions 1.04 times 1.68 times

Table C.2: Effects of individual optimizations in run time and memory usage.

would be reparsed in a separate mode in order to find the error. This improvement led to a
reduction in run-time and memory usage by a factor of around 2.1.

Another improvement worth noting was keeping the state around when reparsing strings
to avoid quadratic parsing times. Unfortunately, not all productions can be kept between
reparses, because sometimes the result of the parse involves a possible macro identifier
(productions with the special <<mid>> instruction) and hence the results of the parse could
change. For example, in Figure 3.3 (page 16) TOP, STMT, EXP, BLOCK, TOKEN_, TOKEN, ID
could not be kept since they all involved a possible macro identifier. As a result of this and
other factors this improvement did not have nearly as much of an effect as we had hoped,
as it only lead to around a 1.2 times improvement in run-time and 1.1 times reduction in
memory usage.

Finally, we implemented the ability to mark certain productions as transient (i.e., used
only once) as was done in Rats! [13] to disable memoization on the production. Unlike
with Rats!, however, transient productions in ZL cannot be determined statically since
some productions, while appearing only once in the grammar, are in fact used more than
once when reparsing. Thus, we also implemented a special profile-like mode in ZL that
will output data that can be used automatically to discover transient productions and create
a hint file which can then be used by ZL. In the sample grammar shown in Figure 3.3,
TOP, STMT, EXP are all transient. In addition, BLOCK, TOKEN, RAW_TOKEN, and SPACING
where also marked as transient since they are low-cost. This optimization led to a small

improvement (1.04 times) in run time and a larger (1.7 times) reduction in memory usage.
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